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Considered is the problem of stability of the plane state of an elastic
thin plate of infinite leugth simply supported along two edges (beam),
subjected to the action of constant forces in its plane, from the point
of view of application of various methods of analysis, namely the methods
of direct integration and the direct method of Liapunov., The definition
of stability in the sense of Liapunov is given for the problem under dis-
cussion, and the theorems of the direct method of Liapunov regarding
stability and instability [1, 2] are given; to this end an auxiliary
metric space is introduced, in order to construct in it the corresponding
functionals (see the dissertation of Krasovskii, and also the paper [31).

It is assumed, that the equations of motion for the dimensionless de-
flection w(x, t), referred to the chord a of the plate, may be written
in the form

o%tw  a®N 8%w  w 0w (x, t)
a—z-a———b—@—i— '(.—jﬁ:(), w(z,t):*—“a‘;g—zr() for z = 0,1 (1)

Here x is the dimensionless space coordinate, referred to the chord
(0 < 1), t is a dimensionless time, referred to the quantity (pa”/D)i/2
p is the mass per unit of area, D is the rigidity, N is the force in the
plane of the plate, positive in case of extension.

1. In a static investigation, the plane state of elastic equilibrium
of the plate w{x = 0 is said to be stable, if there is no other state of
elastic equilibrium w(x) # 0, infinitely close to it ([ 4], p. 94). Non-
trivial solutions w.(x) = ¢, sin mnmx (m=1, 2, ... ) of equations (1},
close to the trivial one for small values of arbitrary constants c,
exist only if the conditions N = N-(m =1, 2, ... ) are satisfied, where
N, = ~{(m?r2D/a?) is the critical Fuler force of order m,

From this, using the definition given above, instability should be

686



Liapunov method in stability problems of elastic systems 687

concluded for N= N _(m . 1, 2, ... ) and stability, if the condition
N> N, is satisfied, or any of the conditions N . < N< N_, The latter
contradicts the well-known experimental fact of plate buckling for N < N,.

2. In a dynamic investigation, the plane undisturbed state of the
plate w(x, t) = 0 1s said to be stable, if among the solutions of equa-
tions (1) of the type

w(z,t) = X (z)e*!, wiz, t)y =X (@) 4 tX (@)}, ...

or solutions, obtained from the preceding ones by separation of real and
imaginary parts (natural and forced motions) there are no divergent ones
(with an amplitude increasing to infinity). All solutions of this type
are easily found:

» / 2N 1
W (T, t) = ¢y SN MNZ COS gml, gm = mn? (1 - 7:2_n25) "
. sin g, 8
wn' (2, t) = ¢’ sin mnx _q'.'.‘.__, tm=1,2,...)
m

(c, are arbitrary constants). Among them there are no divergent ones, if
the condition N > N,; 1if this condition is violated, there are divergent
solutions for certain m's of the type-

. , .. shig, |t
Wi (T, 1) = cmsinmrx ch|gnlt, wm' (2, 1) = ¢p’ sin mry ——"1—

m
wy" (2, 1) = ¢t sinmnzx

Using the definition of *dynamic* stability, given in Section 2, it
is concluded that stability will obtain for N > N, and instability in
the opposite case.

The preceding study is confined to consideration of solutions of a
given form. Supplementary information regarding stability may be obtained,
by considering sufficiently smooth solutions w(x, t) of arbitrary type,
which, together with the derivatives entering into equations (1), may be
represented by uniformly converging series of natural and forced motions:

o0 .
1. sing, ¢t
wiz,t) = Z sin mrx (cm €OS @mt + Cm’ .__q_&)
M=} 3 m

Estimating the coefficient of the series, it may be shown that if
N> N, is satisfied, one can find such & > 0 for an arbitrary ¢ > 0 and
depending only on ¢, that any sufficiently smooth solution w(x, t),
satisfying at the initial instant t; the condition
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satisfies the condition, for all t > t,*

p: (0, w(z,t)) =sup|w(z, t)] + sup}aw(x t)‘<s
x x
We emphasize that the dynamic stability of the plate for N > N, does
not indicate the possibility of selecting for a given ¢ > 0 such a § > 0,
depending only on €, that any solution w(x, t), satisfying at the initial

instant t, the condition p, (0, w(x, t)) < & will satisfy the condition
pl(O, w(x, t)) <e for all ¢t 3 0.

In fact, let us consider all the analytical solutions
wn(z,t) = csinnrz cos gt (n=1,2,...)

where the ¢’s are arbitrary numbers. It is easy to calculate that for
a given ¢ > 0 the solution wn(x, t) satisfies the condition

pl(O, wlx, t)) <e
for all ¢t » 0 if, and only if, the condition

p1(0, wa (2, 0)) <3p=e/(1 + ga®)"
is satisfied at the initial instant t = 0,

Since 8, + 0 as n > « and p, (0, w (x, 0) = |c|, no matter how small
8> 01is chosen, any solution w (x, t) for 0 < ¢ < & satisfies the
condition p (0, w (x, 0)) < &, however, the solutions w, (x, t) with
sufficiently large orders n, for which 8, < c satisfy condltlon

(0 w(x, t)) < e not for all ¢ > 0,

The indicated feature, characteristic of elastic systems, may be made
plausible in the following manner: the condition p (0, w(x, ty)) <8,
constraining the initial deflections and velocities of points of the
plate, does not limit the initial potential strain}* which, in the pro-
cess of motion, passes over into kinetic energy, and produces, at isolated
instants, "splashes" of magnitude pl(O, w(x, t}). In order to suppress
these splashes, it is sufficient to impose a more rigid constraint
pz(O, wix, to)) < & on the initial state of the plate, which would limit
not only the initial deflections, and velocities, but also the correspond-
ing initial energy of bending strains and strain rates.

* Compare with the definition of‘correctness ds1, pp. 80-83).

** It is easy to calculate that the potential strain energy, correspond-
ing to the initial deflection wn(x, 0) = ¢ sin nrx of the plate
increases to infinity as n increases,
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3. Before we apply the direct method of Liapunov to the problem under
consideration, let us discuss one of possible versions of defining and
proving basic theorems, which may be more convenient in certain applica-
tions, than those contained* in [3].

In the metric [ 6] space R(a, p), whose elements are determined by
a, ag, a’, ..., there is given a continuous curve a(aﬂ, tg, t), emanating
from the point a; at the instant of time ¢ if there corresponds to each
given value of the real parameter (of time? t in the interval t; < t < =
in R(a, p) a determined point alay, tg, t), such that aley, tg, ty) = a
and the reflection a(ao, to t) are continuous** for arbitrary t > toe
Reduced continuous curves a(ao, to t), given for a finite interval of
time t. < t < t, {each curve having its own interval) are also considered.
If at the point a, at the instant of time t; more than one curve 1is
emanating, we write aa(ao, ty, t}, indicating different curves by diffe-
rent values of the index a and calling the pencil of curves aa(ao, ty t)
the set of all curves, which emanate from the point a, at the instant of
time t;. Different pencils of curves aa(ao, tys t), emanating from
different points a; at different instants of time t; > 0 are considered.

Arong the curves considered, we separate a class L of curves which
satisfy certain supplementary conditions. These supplementary conditions,
which in specific problems may be differential equations with ordinary
or partial derivatives, integra-differential equations, boundary condi-
tions, smoothness conditions, etc., are written down in the fomm
L(a, t) = 0 and are called, by convention, the equations of the boundary
value problem. It is assumed, that there exists a curve of class L, to
which, for any t > 0 there corresponds a point a¢” in R(a, p).

This curve we call the undisturbed motion a”, and the remaining curves
of class L are called the disturbed motions. We assume also that for any
8 > 0 one can find at least one disturbed motion a(aé, to. t) initiating
in the vicinity p(a’, ay) < 8.

On any set of pairs (a, t) there is determined a real functional
f(a, t), if there corresponds to each pair (a, t) of this set a definite
(one for any given pair and finite) real number f(a,t).

In[3], as a result of excessive generality, certain proofs (for example,
the sufficiency in the stability theorem) are not in a form in
which a simple reference to them may fully satisfy the reader.

** This means, that p(alay, t;, t), alay, t;, t,)) > 0 as n+ o for any
sequence t_, t_ p ty converging to t,
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Let the pair (a, t) be such, that p(a’, a) < R, where R is a positive
fixed number and let a disturbed motion ala, t, t + r), 7 » 0 exist,
which initiates at the point a at the instant of time t. The set of all
such pairs (a, t) is designated by LRT. We consider the functional
f(a, t) determined on the set LRT and possessing on LRT certain pro-
perties. The functionals f(a, t) may not possess these properties outside
of LRT, where they may also be determined. Since each pair (a, t) € LRT
corresponds to a point on a certain disturbed motion of the boundary
value problem L(a, t) = 0, we shall talk occasionally about this or that
property of the functionals f(a, t) valid on LRT, as a property valid
by virtue of the equations of the boundary value problem L{a, t) = 0 (or
as a property valid along disturbed motions).

The functional f(a, t) is finite and positive by virtue of the equa-
tions of the boundary value problem L{a, t) = 0, if for an arbitrary
positive number ¢ < R and for any pair (a, t) LRT, satisfying the con-
dition p(e”, a) > ¢, one can find such a g > 0, depending only on ¢ for
the condition f(a, t) > p to be satisfied.

The functional f(e, t) admits, by virtue of the equations of the
boundary value problem L{a, t) = 0, ‘an infinitely small upper bound, if
for any g > O one can find such a & > 0,depending only on u, that
| fla, t)] < p for any pair (a, t) LRT satisfying the condition
pla’, a) < 8.

The functional f(a, t) is called non-increasing by virtue of the
equations of the boundary value problem L{(a, t) = 0, if on LRT along any
disturbed motion aa(ao, to t) the function f(aa(ao, to t}t does not in-
crease with the increase of t.

The functionsl f(a, t) is called vanishing along the curve aa(ao, ty, t),
if the function f(a,(a,, t;, t), t) exists for all t > t; and approaches

to zero as t » oo,

The region f(a, t) > 0 is called the set of pairs (a, t) LRT for
which fla, t) > 0. The functional f(a, t) is called Lounded in the region
fla, t) > 0, if on LRT for some N > 0 there follows the inequality
fla, t) < N from the inequality f(a, t) > 0.

The functional f(a, t) has, by virtue of the equations of the boundary
value problem L{a, t) = 0, a finite positive derivative f"{a, t) in the
region f(a, t) > 0, if, for g > 0 and any disturbed motion aa(ao, ty t)
which satisfies on LRT the condition f(aa(ao, to t), t) > u, one can
find such v > 0, depending only on p and possibly, on the disturbed
motion a {a,, t,, t), taken that on LRT the inequality df(aa(ao, ty, t),
t)/df » v 1s satisfied.

The set of all points of the metric space Rla, p), belonging to all
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possible curves of the pencil of disturbed motions, initiating at the
point a, at the instant of time t;, shall be designated by A(aj, t,).

To each pair (e, t) LRT there corresponds its own pencil of disturbed
motions (initiating at the point a at the instant of time t), and as a
consequence its own set A(a, t). The upper face of the distances from
points a’ to points of the set A(a, t) shall be designated as p®(a”,
Ala, t)). Since a Ala, t), then p°(a’, Ala, t)) > pla’, a).

Definition. The undisturbed motion a” is called stable, if for any
€ > 0 one can find such a 8 > 0, depending only on ¢, that any disturbed
motion a (a;, t,, t), initiating in the vicinity of p(a’, a,) < 3,
satisfies for any t > t, in the region of its definition* the condition
pla’, aa(ag, tg t}. In the opposite case the undisturbed motion a’ is
called unstable.

It is obvious that if the undisturbed motion a’ is stable one can find
for any €, > 0 such a &, > 0, depending only on ¢, that any pencil of
disturbed motions, initiating at the instant t at the point a from the
vicinity p(a’, a) < 8,, satisfies the condition p%(a’, Ala, t)) < €,

Passing to the proof of the theorems, we emphasize once more that we
use the fact, in our discussion, regarding the existence of disturbed
motions in an arbitrarily small vicinity of the undisturbed one. In those
specific problems, in which the questions regarding existence are not
clarified, the results proved have only a conventional meaning: if the
corresponding solutions exist, and the conditions of the theorems are
satisfied, then the conclusions are also valid. As a consequence, we apply
a scheme 1in which the questions of existence are separated from the
questions of stability in the same manner, as this is frequently done in
studying questions of existence and uniqueness.

Stability Theorem. In order that the undisturbed motion be stable, it
is necessary and sufficient that there exists, by virtue of the equations
of the boundary value problem, a finite positive non-increasing functional,
which admits an infinitely small upper bound.

Proof. Necessity. let the undisturbed motion a” be stable. We take
some £ > 0 and by virtue of stability we find such R > 0, depending only
on E, that any pencil of disturbed motions, initiating at the instant of
time t at the point a from the vicinity p(a”, a) < R satisfies the condi-
tion p®(a’, Ala, t)) < E. To each pair (a, t) LRT we establish a cor-
responding definite (one for a given pair and finite) real number
fla, t) = p°la”, Ala, t)).

* Damped disturbed motions are also admitted.
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The functional f(a, t) is finite positive, since the inequality
°(a’, Ala, t)) > pla’, a) is satisfied.

The functional f{a, t) admits an infinitely small upper bound, since,
by virtue of stability, for an arbitrary ¢ > 0 one can find such a positive
8 < R depending only on p, that any pencil of disturbed motions, initiat-
ing at the instant t at the point a from the vicinity p(a’, a) < &
satisfies the condition p®(a’, A(a, t)) < u that is, fromp(a’, a) <8 it
follows | f(a, t)| < p.

Assume that for any t in the interval ¢, < t < t,, t, > t, the points
of disturbed motion a (ao to t), including the terminal ones a, =
azlay, ty, tg ) and a, = a,(ay, t,, t, ), satisfy the condition p{a’, a a,
(ao, to t)) < R. Since the pencils, orlglnatlng at the points of one
and the same curve, enter completely, at a later instant of time, into
the group of pencils, originating at an earlier instant of time, it
follows A(al, t ) = Ala,, t, ). From here p°(a’, A(al, tl)) > p%a’,
A(a t, ), that is, f(a t ) > f(az, t,) or, more completely,

f(a (a tos t) > }(a a,, ty, t,), t,), which indicates that the
functlonal f(a t) does not 1ncrease by v1rtue of the equations of the
boundary value problem L(a, t) =

Supplement regarding asymptotic stability. Let the undisturbed motion
be stable and let, in addition, any undamped disturbed motion, suffi-
ciently close to the undisturbed one, approach it asymptotically. Then
the functional f(e, t) = p°(a”, A(a, t)), constructed on LRT, vanishes
along any such disturbed motion.

In fact, under the assumptions met, for some positive § < R any un-
damped disturbed motion a, (a ty. t), initiating in thé vicinity of
pla’, a,) < 8, satisfies the cond1t1ons pla’, a,lay, t,, t)) <R for any
t>t, and p(a ) a, (a tos t)) > 0 for t » =. Let us take some undamped
disturbed motion a (a0 t,, t) initiating in the vicinity of pla’, a,) < 8.
The first condltlon guarantees the existence of the function
fla(ay, t,, t), t) for any t > t,. The second condition means that for
any v, > 0 one can find such t1 = t,{ay, tg, a) > t, that for all t > ¢,
’

the inequality p(a”, a,(a,, t t)) < v 1s satisfied.

0 1

let an arbitrary g, > 0 be given. By virtue of stability for the given
f, one can find such a v > 0 that any pencil of disturbed motions
initiating at the instant of time t at the point a from the vicinity
pla’, a) < v, satisfies the condition p°(a”, Ala, t)) < p,. For this v,
one can find, as is indicated above, such a t, = t (ao ty, a) > >t that
for all t > t, at points a = a (ao, to t) of the curve taken, the in-
equality p(a’, a) < v, is satlsfled and consequently, p®(a’, Ala, t))<y,

that is fla, t) = fla (ay, t;, t), t) < p,.
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Thus, for any undamped disturbed motion aa(ao, t,, t), initiating in
the vicinity p(a', a,) <8 for a given g, > 0 one can find such a

=t (a to a) > t that f(a (a ty. t), t) < By for all ¢t > t,
ttat is f?a (ay, tg, + 0 for t » .

1f p(a’, aa(ao, ty, t)) > 0 as t » o uniformly with respect to a and
a, from the vicinity p(a’, ) < 8, the number ty which was mentioned
above, may be selected as belng 1ndependent of a and a, from the vicimty
pla’, a,) < 8.

Sufficiency. Assume that for some R > 0 the functional f(a, t)
possesses on LRT all the properties indicated in the theorem. Let also
be given a positive ¢ < R.

The functional f(a, t) is finite positive, therefore for ¢ > 0 and any
pair (a, t) LRT satisfying* the condition p(a”, a) > ¢ one can find
such a p > 0, depending only on €, that f(a, t) > p is satisfied.

The functional f(a, t) admits an infinitely small upper bound, there-
fore, the number p > 0 permits to determine such a positive § < ¢, de-
pending only on p so that | f(a, ¢t)| < g and that for any pair (e, t) LRT
the condition p(a’, ao) < & is satisfied.

Let us prove that for the & found, the disturbed motion aa(ao, ty, t),
initiating in the vicinity p(a’, a,) < 3, satisfies for all t > t, the
inequality (p(a’, a, ag, tg, t) < € 1in the region of its def1n1t10n. We
shall assume that this is not so, and that there exists a disturbed
motion a (ao, ty, t) 1initiating in the vicinity of p(a”, ay) < 8 which,
at a certain instant of time t > t,, does not satisfy the cordltlon
pla’, a, (a ty, t)) < e.

Due to continuity of the curve aa(ao, ty, t) one can find such a
t, > t, that in the interval t, < t < t, the inequality p(a’, a (ao, 0’
t}< € 1s satisfied, and at the instant t, the equality p(a’, a ?a st ))=¢

Then f(a (ay, tg, t, ), t, ) > p, which contradicts the condition of
divergence of the functlon f(a (a to t), t) determined for any t in
the interval t, < t < t, and taklng on at its lower limit the value
fCagy, ty) < p.

Supp lement regarding asymptotic stability. Assume that the functional
fla, t) for some R > 0 possesses on LRT all the properties indicated in
the theorem and assume, in addition, that the functional f(a, t) vznishes
along any undamped disturbed motion, sufficiently close to the undis-
turbed one. Then any undamped disturbed motion, sufficiently close to the

* If for a given ¢ there is no pair (a, t) LRT, satisfying condition

p(a”, a) > ¢, the proof is trivial.
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undisturbed one, approaches it asymptotically.

In fact, under the assumptions met, for some positive § < R any un-
damped disturbed motion aa(ao, ty t), initiating in the vicinity
pla’, ao) < 8, satisfies the conditions p(a’, azlay, ty, t)) <R for all
t> t,and fla o, t,, t), t) » 0 as t » oo,

Let there be given any positive ¢, < R. The functional f(a, t) is
finite positive, therefore, for the given ¢, and for any pair (a, t) LRT
satisfying® the condition p(a’, a) > ¢, one can find such a g > 0 de-
pending only on ¢, that fla, t) > My

Let us take some undamped disturbed motion a,{ay, t,, t), initiating
in the vicinity p(a’, ao) < 8. Since f(aa(ao, to, t), t)> 0as t » o,
one can find such a t, = t {ay, ty, a) > ¢ that fla,(ay, t,, t),¢) <p,
for all t > t,. Then for all ¢t > t, for points a = a,lay, ty, t) of the
curve taken, the relationship p(a’, a) = p(a’, aa(ao, tor t%) <e, is
satisfied because, if for some t > t, the inequality p(a’, @) > ¢, would
hold, for this t > t, one would also have fla, t) = f(aa(ao, ty, t),t));xl,
which 1s impossible.

Thus, for any undamped disturbed motion o (ao, ty t), initiating in
the vicinity p(a’, ay) < & for a given ¢, > 0, one can find such a
t, = tl(a ) g, a) > t, that pla’, aa(ao, to, t)) < e, for all t> ¢,
that is p?a', aylay, tg, t)) > 0 as t > .

If the functional f(a, t) vanishes along undamped disturbed motions
aa(ao, ty, t}, initiating in the vicinity p(a’, ao) < 8, uniformly with
respect to a and a; from the vicinity p(a®, ay) < 8 the number t,, which
was mentioned above, may be selected as being independent of a and a,
from the vicinity p(a”, ay) <8, that is, all undamped disturbed motions,
sufficiently close to the undisturbed one, approach it uniformly asympto-
tically.

Instability Theorem. Let us assume that for some R > 0 among the dis-
turbed motions, initiating on LRT, there are no damped ones, and that
any two portions of disturbed motions connected on LRT, having at some
instant of time in their region of definition a common point, coincide
{on LRT) at all the subsequent instants of time, that is, that for such
portions a(al, t., t) and a(az, t,, t) from a(ai, tys t3) = a(az, t, t3)
it follows ala,, t,, t) = ala,, t,, t) for t > t,.

In order that the undisturbed motion be unstable, it is necessary and
sufficient, that there exists a functional f(a, t) which is bounded in

* If for the given ¢, there is not a single pair (a, t) LRT satisfying
the condition p(a’, a) > ¢, then the proof is trivial.
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the region f(a, t) > 0 having pairs (a, t) for any sufficiently small
vicinity of undisturbed motion, and that it has, by virtue of the equa-
tions of the boundary value problem, a finite positive derivative f"(a,t).

Proof. Necessity.* Let the undisturbed motion a’ be unstable. Then for
some R > 0 and an arbitrary positive 8 < R, we can find a disturbed motion
alag, t,, t), initiating in the vicinity pla’, a;) <& and satisfying the
condition p(a’, a(ao, t,, t) < R within some finite interval t;, < t < £,
whereby p (a’, a(ao, tor t9)) = R.

The portion of disturbed motion a(ao, t., t), t, < t< t0 shall be
called connected on LRT if for any t of the interval t ;< t < t% the
relation p(a’, a(ao, to t) < R is satisfied whereby either

pla’, ala,, t , t9)) =R, or t? = .

0’0
By virtue of uniqueness, mentioned in the condition of the theorem, the
set of all portions of disturbed motions connected on LRT may be sub-
divided into classes lg (a given index B characterizes a given class),
including in a class with some portion ala,, t,, t) all the portions,
having with it, at any instant of time t > t;, common points (e, p.17).
For some portion a(ao, to, t) of class ly the region of its definition is
the interval t; < t < t C whereby tg’ has a common value for all portions
of the class lg (for example, the portion a(al, ty, t) of class ZB is de-
fined in the interval t, < t < tﬁo).

If t3° < = along any portion of class lg in the region of its defini-
tion, we put f(a, t) = exp(t — tg’). For example, along the portion
a(aQ, to, t) of class lp we put fga(ao, t06 t), t) = exp(t - tﬁf) for any
t within the interval t < t < tg". If tg° = « along any portion of class
lﬁ in the region of its definition, we put f(a, t) = O,

Thuét to each pair (a, t) LRT there corresponds a well-determined
(one for a given pair and finite) real number f(a, t).

Pairs (a, t) LRT for which f(a, t) = exp(t - tg’) > 0 exist for any
sufficiently small neighborhood of undisturbed motions (see beginning of
proof).

0< f(a, t) < 1 is satisfied everywhere on LRT, that is, the
functional f(a, t) is bounded.

The functional f(a, t) is determined on LRT in such a manner that
along any disturbed motion a(ao, to, t) the relation

Ed

The necessary conditions can be proved without the assumption that the
disturbed motions are undamped.
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df(alay, ty, t), t)/dt = flalay, ty, t), t)

is satisfied. It follows that in the region f(a, t) > 0 the functional
possesses, by virtue of the equations of the boundary value problem, a
finite positive derivative f’(a, t).

Sufficiency. Let for some R > 0 the functional f(a, t) exist on LRT,
which possesses the properties 1indicated in the conditions of the
theorem. We assume that the undisturbed motion a” is stable. .Then one
can find such a & that any disturbed motion a(ao, ty t) initiating in
the vicinity of p(a’, ao) < & satisfies for all t > t, the condition
pla’, a(ao, to t)) <R and does not pass beyond the region in which the
functional f(a, t) possesses the properties indicated in the conditions
of the theorem.

According to the conditions of the theorem, one can select such an un-
damped motion ala,, tg, t) among the disturbed motions initiating in
the vicinity of p?a’, ao) < 8, that f(ao, to) > 1> 0. We conclude, from
the fact that the functional f(a, t) possesses in the region f(a, t) > 0,
by virtue of the equations of the boundary value problem, a finite posi-
tive derivative f”(a, t), that .along the selected disturbed motion
a(ao, ty, t) for t 3 t, the relations

/(a (aOr Lo, t)r t) >P‘v d/ (a (aOv to, l), t) /dt}v

are satisfied simultaneously, where v 1s some positive number. Then it
follows from the boundedness of the functional f(a, t) in the region
fla, t) > 0,and from the first inequality, that for some N > 0 and any
t > t, the relation f(a(ao, ty t), t) < N is fulfilled, while from the
second inequality the contradicting relation f(a(ao, ty, t), t) 3

f(ao, to) + (e - to) follows for sufficiently large t > ty

Remark. The uniqueness mentioned in the condition of the theorem was
not used in proving sufficiency. From the conditions of existence merely
the fact that undamped disturbed motions ala,, t., t) exist, which is
initiated in a suffictiently small neighborhood of the undisturbed motion
in the region f(a, t) > 0, was employed.

4. We consider the set W of real functions w(x, t), completely defined
and continuous in x, t in the region 0 < x < 1, t > t, > 0, together with
the derivatives wxx(x, t), wz(s, t), wl(s, t). At a fixed instant of time
t we establish a correspondence between the function w(x, t) W in the
region of its definition and the point w = [w(x, t), w,(s, ¢t)], a pair
of functions of magnitude x. The points w = [wl(x, tls, wltl(x, ti)]
and w, = [w,(x, t,), w,,,(x, t,)] shall be called coincident, if
wl(s, H) = wz(x, tz) and w 1(x, tl) = w2t2(x, tz). The distance between

. . it .
the points w, and v, is called the non-negative number



Liapunov method in stability problems of elastic systens 697

o (wy,wy) = { :de,i‘; [akw;ii,n) _a"w;it, 13) Y"' :S dx [aw; a(z 4) aw“-a (: zg)]z}v,

It is easily verified that p(w,, w,) satisfies all the axioms of metric
space. The set of points w, toget,her \nt,h the metric p(wl, ’”2) forms the
metric space R{w, p). The set of points w corresponding to functions
w{x, t) W for all possible t within the region of definition, form in
R(w, p) a continuous curve which we identify in the following with the
function w(x, t) itself.

We shall call the conditions of the boundary value problem L{w, t) =
the equations (1) and the supplementary conditions of smoothness, that is,
the continuity for all x, t of the functionms w“xx(x, t), wix, t),

v, .. (x, t), v ,(x, t), w,, (x, t). From the set W we isolate a class L of
curves w(x, tg which satlsfy the conditions of the boundary value problem
L{w, t) = 0. The curve w(x, t) = 0 of the class L to which there corres-
ponds for any t > 0 in R(w, p) a fixed point O, we shall call the undis-
turbed motion; the remaining curves of class L shall be called disturbed
motions.

In accordance with the definition in Section 3, the undisturbed motion
w(x, t) = 0 shall be called stable, if for any ¢ > 0, we can find such a
8 > 0, depending only on ¢, that any disturbed motion w(x, ¢) initiating
in the vicinity of p(0, w(x, t;)) < 8 satisfies for t 3 t; the condition
p(0, w(x, t)) < e. To study stabxhty we consider the functional

fw) = §dx (wxxz + a,’TN w.? -+ wlz)
1]

It can be shown that for any function w(x, t) W, satisfying the
boundary conditions and the conditions of smoothness of the boundary
value problem L(w, t) = 0, the following inequalities are satisfied

1 1 1 1
X AT Wee® > neg dzw,?, de Wyt > n? g dzw?
0 0 0 0

with the aid of which we obtain

1 (w) > 1% (0, w), 1=§-min (i ) 2% 3(1 +2 )}

From this we conclude, that if the condition 1 + (a?N/z2D) > 0 is
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satisfied, that is, if N> N, the functional f(w) is finite positive* by
virtue of the boundary value problem L{w, t) = 0. The functional f(w)
admits an infinitely small upper bound, as is evident from the estimate

)62, w)

Along any curve w(x, t) € W which satisfies the smoothness conditions
of the boundary value problem L(w, t) = 0 the function f(w(x, t)) of time
t is determined, whose derivative with respeet to t may be written in
the form, by means of differentiation under the integral sign and partial
integration

reN< (1 + |53

1
d dw  a®N w | w]ow |
i fw @) =2{da |G~ o + 5a |5 +
0
+ [8210 w  Bwiw | a’Naw dw)l
gzt 0z 9t 0«® AL 775567]0
It is evident that by virtue of the erquations of the boundary value
problem L(w, t) = 0 the relation df{w(x, t})/dt = 0 is fulfilled and,
consequently, the functional f(w) does not increase with t along any
disturbed motion w(x, t).

In satisfying condition N > N, stability, in the sense of the defini-
tion given above, follows from the first theorem of the direct method of
Li apunov.

We note that along disturbed motions

x

\w(m,t)!xlgdxwx

0

< (i dzwy?) " <o (0, (1)
0

Therefore, for N> N, for given ¢ > 0, one can find such a § > 0 de-
pending only on ¢ that any disturbed motion w(x, t) initiating in the
vicinity p(0, w(x, tO)) < 8 satisfies for all t > t, the condition
P50, wix, t)) = sup [wlx, t)|<e.

x

Let us now consider the functional

1
® (w) _ {“‘f(w) § {w) for f{w) <0, (p(w) - de ww,

0 for j(w)==0, J

Let us assume that the relation &l(w(x, t,)) »-p is satisfied for some

We emphasize that in proving the finite positive state of the func-
tional f(w) the conditions of smoothness of the curves w(x, t) and
the boundary conditions of the boundary value problem L(ws, t} h O
were essentially used,
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p > 0 and for some undamped disturbed motion w(x, t) at instant t;. Then
flulx, t5)) < 0. Along the disturbed motion considered, this inequality
is valid for any t > t;, since fluw(x, t)) = f(w(x, t,)); as a consequence
Hlulx, t)) = - flulx, t))¢i(wlx, £)) for any t > ¢,.

From this we find, by differentiating with respect to t under the
integral sign and integrating by parts, using the equations of the bhound-
ary value problem L(w, t) = 0, that along the disturbed mocion considered,
for t > ¢,

%@(w(x. ) >v=71*w(z, t)) >0, Pw(r,t) >p

that is, the functional ¢(w) possesses, by virtue of the equations of the
boundary value problem, a finite positive derivative ¢”{w) in the region

Hw) > 0.

The functional ¢(w) is bounded in the region ¢(w) > 0 since

@) =17 @) lI$ @I <(1 +|5p])e 0 w)

Applying now the instability theorem, we conclude that the undisturbed
motion will be unstable, if there exist, in any sufficiently small
neighborhood of this motion, undamped disturbed motions initiating at
points wlx, ty) for which #lwlx, t,)) > 0.

a?N
2D

Let us consider the points w(x, t;) of the metric space R(w, p) which
are characterized at the instant of time ty by deflections ¢, sin 7 x
and velocities ¢, sin 7 x where ¢,, ¢, are real arbitrary constants (for
undamped disturbed motions w(x, tg with initial deflections w,(x) and
velocities wl(x) to exist, 1t is sufficient that wi(x) (i = 0,1) possess
continuous sixth derivatives and that they vanish for x = 0, 1, together
with the derivatives v ” (x), wilv(x)). For these points w(x, t,), which
are found (for suitable Cor Cl) in any sufficiently small vicinity of
the undisturbed motion, the functional f(w) takes on the values

Jw (@) = Feo? (1 4 )+ o]

It is possible to choose such a small ¢ ? that for 1+ (a®N/n?D) < 0,
that is, for N < N, the relation f(u(x, t,)) < 0 is satisfied; if
cpcy > 0, the relations viw(x, to)) > 0 and ¢(w(x, to)) > 0 are also
satisfied. Consequently, for N < N, the undisturbed motion is unstable.
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