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Considered is the problem of stability of the plane state of an elastic 

thin plate of infinite length simply supported along two edges (beam). 

subjected to the action of constant forces in its plane, from the point 

of view of application of various methods of analysis, namely the methods 

of direct integration and the direct method of Liapunov. The definition 

of stability in the sense of Liapunov is given for the problem under dis- 

cussion, and the theorems of the direct method of Liapunov regarding 

stability and instability [ 1, 21 are given; to this end an auxiliary 

metric space is introduced, in order to construct in it the corresponding 

functionals (see the dissertation of Krasovskii, and also the paper f 31 ). 

It is assumed, that the equations of motion for the dimensionless de- 

flection P(X, t), referred to the chord a of the plate. may be written 

in the form 

SW a?N CYW d%u _-- --_o * az2+ atz-- w (5‘ 4 = 
azw (2, 1) 

52 ’ (q.$ = 0 for 2= 0,1 (1) 

Here x is the dimensionless space coordinate, referred to the chord 

(0 < x < 11, t is a dimensionless time, referred to the quantity (pa4/Dj1” 

~1 is the mass per unit of area, D is the rigidity, N is the force in the 

plane of the plate, positive in case of extension. 

1.. In a static investigation, the plane state of elastic equilibrium 

of the plate r&z _= 0 is said to be stable, if there is no other state of 
elastic equilibrium w(x) f 0, infinitely close to it (I 41, p. 94). Non- 

trivial solutions wlCr) = cm sin tlln x (m = 1, 2, . . . f of equations (11, 
close to the trivial one for small values of arbitrary constants cm, 
exist only if the conditions N = N_(m = 1, 2, . . . ) are satisfied, where 
N/- (m2n2D/a2) is the critical Flier force of 

From this, using the definition given above, 

686 

order m. 

instability should be 
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concluded for N = Nm(m e 1, 2, . . . f and stability, if the condition 

N > N, is satisfied, or any of the conditions Nm+l< N < Nn. The latter 
contradicts the well-known experimental fact of plate buckling for N < N,. 

2. In a dynamic investigation, the plane undisturbed state of the 

plate w(x, t 1 F 0 is said to be stable, if among the solutions of equa- 

tions (1) of the type 

20 (x,1) = x (x) PI, w (5, t) = [X, (5) + tX (cc)] cat, * . * 

or solutions, obtained from the preceding ones by separation of real and 
imaginary parts (natural and forced motions) there are no divergent ones 

(with an amplitude increasing to infinity). All solutions of this type 

are easily found: 

wm (5, t) = c, sin mnx cos qmt, qm = mv ‘I -t &)*‘r 
t 

21,‘~’ (2, t) L- cm’ sin mrcx y {m = I, 2,. . .) 

(cl are arbitrary constants). Among them there are no divergent ones, if 

the condition N > N1; if this condition is violated, there are divergent 

solutions for certain m’s of the type 

w, (5, t) = cm sin mxx ch 1 qm J t, 

w,” (z, t) = c,“t sin mnRx 

wm’ (2, t) =- cm’sirl rr1iTx 
s’j I ‘I, I 1 

Qm 

Using the definition of “dynamicW stability, given in Section 2, it 
is concluded that stability will obtain for N > N, and instability in 

the opposite case. 

The preceding study is confined to consideration of solutions of a 

given form, Supplementary information regarding stability may be obtained, 

by considering sufficiently smooth solutions wfn, t) of arbitrary type, 

which, together with the derivatives entering into equations (l), may be 

represented by uniformly converging series of natural and forcecl motions: 

w(z,t)_e- h sin rnxx 
rn=I i 

cm cos q,t + c,’ 
sin q,t 

___ 
Q7n 1 

Estimating the coefficient of the series, it may be shown that if 

N > N, is satisfied, one can find such R > 0 for an arbitrary c > 0 and 
depending only on c ) that any sufficiently smooth solution w(n, t), 

satisfying at the initial instant t0 the condition 
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satisfies the condition, for all t >, tQ* 

We emphasize that the dynamic stability of the plate for N > N1 does 

not indicate the possibility of selecting for a given 6 > 0 such a 6 > 0, 

depending only on E, that any solution w(n, t), satisfying at the initial 

instant to the condition ~~(0, m(x, t)) < 6 will satisfy the condition 

~~(0, wtx, t)) < f for all t ) 0. 

In fact, let us consider all the analytical solutions 

Wn(& q = c sin nsx cos qnt (n = 1,2,. . . ) 

where the c's are arbitrary numbers. It is easy to calculate that for 

a given c > (t the solution w,(n, t) satisfies the condition 

p,(O, w(x, t)) < 6 

for all t >/ 0 if, and only if, the condition 

Pi{0 t Wt(~ , 0)) < %a = s/(1 + qnZ)'lt 

is satisfied at the initial instant t = 0. 

Since an 4 0 as R -+ g9 and ~~(0, w,(x, 0) = ICI , no matter how small 

6 > 0 is chosen, any solution w,(x, t) for 0 < c < 6 satisfies the 

condition p,(O, w,(x, 011 < 6, however, the solutions w,(x, t) with 

sufficiently large orders ;1, 

p&O, w(x, t)) < 
for which 6,, < c satisfy condition 

E notforall t>O. 

'Ihe indicated feature, characteristic of elastic systems, may be made 

plausible in the following manner: the condition ~~(0, wfr, to)> < 6, 
constraining the initial deflections and velocities of points of the 

plate, does not limit the initial potential strain:* which, in the pro- 

cess of motion, passes over into kinetic energy, and produces, at isolated 

instants, "splashesn of magnitude pItO, wfx, t)), In order to suppress 

these splashes, it is sufficient to impose a more rigid constraint 

P2(% W(% t,)) < 6 on the initial state of the plate, which uould limit 

not only the initial deflections, and velocities, but also the correspond- 

ing initial energy of bending strains and strain rates. 

. 

.I 

Compare with the definition of correctness ([ 51, pp. 80-83). 

It is easy to calculate that the potential strain energy. correspond- 

ing to the initial deflection w~(x, 0) = c sin ~RX of the plate 

increases to infinity as n increases. 
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3, Before we apply the direct method of Liapunov to the problem under 
consideration, let us discuss one of possible versions of defining and 
proving basic theorems, which may be more convenient in certain applica- 

tions, than those contained* in [ 31. 

In the metric [6] space R(a, p), whose elements are determined by 
, 

=, aa' or ***, there is given a continuous curve a(~~, tO, t), emanating 

from the point a0 at the instant of time t 
3 

if there corresponds to each 

given value of the real parameter (of time t in the interval t0 < t < * 

in R(a, p) a determined point a(~~, tO, t), such that ataO, to, to) = a 
and the reflection u(uO, tO, t) are continuous** for arbitrary t > t,,. 
Reduced continuous curves ~(a~, to, t), given for a finite interval of 

time to< t<t, (each curve having its own interval) are also considered. 

If at the point a0 at the instant of time to more than one curve is 

emanating, we write ua(ao, tO, t), indicating different curves by diffe- 

rent values of the index a and calling the pencil of curves a,(aO, to, t) 
the set of all curves, which emanate from the point a0 at the instant of 

time tO. Different pencils of curves ua(ao, tO, t), emanating from 

different points a0 at different instants of time to > 0 are considered. 

Among the curves considered, we separate a class L of curves which 

satisfy certain supplementary conditions. These supplementary conditions, 

which in specific problems may be differential equations with ordinary 

or partial derivatives, integra-differential equations, boundary condi- 

tions, smoothness conditions, etc., are written down in the form 

LGZ, t) = 0 and are called, by convention, the equations of the boundary 

value problem. It is assumed, that there exists a curve of class L, to 

which, for any t > 0 there corresponds a point a ' in R(a, p). 

This curve we call the undisturbed motion a', and the remaining curves 

of'class L are called the disturbed motions. We assume also that for any 

6 > 0 one can find at least one disturbed motion ataO, to, t> initiating 

in the vicinity p(u', a,) < 6. 

01 any set of pairs (a, t) there is determined a real functional 

f(a, t), if there corresponds to each pair (a, t) of this set a definite 
(one for any given pair and finite) real nuder f(a,t). 

l 

l * 

In [31, as a result of excessive generality, certain proofs (for example, 
the sufficiency in the stability theorem) are not in a form in 

which a simple reference to them may fully satisfy the reader. 

This means, that p(afa,, to, t), aCoo, to, t,)) + 0 as n -+ m for any 

sequence tn, tn ) to converging to t. 
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Let the pair (a, t) be such, that ~(a', a) < R, where R is a positive 
fixed number and let a disturbed motion a(a, t, t + 7 ), r 3 0 exist, 

which initiates at the point a at the instant of time t. 'Ihe set of all 

such pairs (a, t) is designated by LRT, We consider the functional 

f(Q) t) determined on the set LRT and possessing on LRT certain pro- 

perties. The functionals f(a, t) may not possess these properties outside 

of LRT, where they may also be determined. Since each pair (a, t) C LRT 
corresponds to a point on a certain disturbed motion of the boundary 

value problem L(a, t) = 0, we shall talk occasionally about this or that 
property of the functionals f(u, t) valid on I, RT, as a property valid 

by virtue of the equations of the boundary value problem L(a, t) = 0 (or 
as a property valid along disturbed motions). 

The functional f(a, t) is finite and positive by virtue of the equa- 

tions of the boundary value problem L(n, t) = 0, if for an arbitrary 

positive number t < R and for any pair (a, t) LRT, satisfying the con- 

dition ~(a', a) > t, one can find such a ~1 > 0, depending only on 6 for 

the condition f(n, t) > p to be satisfied. 

The functional fta, t) admits, IJy virtue of the equations of the 

boundary value problem L(n, t) = 0, 'an infinitely small upper bound, if 
for any p > 0 one can find such a 6 > 0,depending only on n, that 

I f(a, t)I < p for any pair (a, t) LRT satisfying the condition 

P(U’r a) < 6. 

Tile functional ftn, t) is called non-increasing by virtue of the 

equations of the boundary value problem L(a, t) = 0, if on LRT along any 

disturbed motion a,(~,, tO, t) the function f(a,(ao, to, t)t does not in- 

crease with the increase of t. 

Ihe functions1 ftu, t) is called vanishing along the curve ua(ao, 6, tj, 
if the function f(cl,(a,,, tO, th, t) exists for all t > to and approaches 

to zero as t + m. 

?he region f (a, t) > 0 is called the set of pairs (0, t) LRT for 

which f(a, t) > 0. The functional f(a, t) is called bounded in the region 

f(% t) > 0, if on I, RT for some N > 0 there follows the inequality 

f(a, t) < N from the inequality f(n, t) > 0. 

The functional f(a, t) has, 1)~ virtue of tlie equations of the boundary 

value proljlern L(n, tj = 0, a finite positive derivative f'(n, t) in the 

region f(a, tj > 0, if, for p > 0 and any disturbed motion aaa(aO, to, t) 
whicll satisfies on LRT the condition f(u,(nO, tO, t), t) > IL, one can 

frrrd such v > 0, depending only on p and possibly, on the disturbed 

motion ur,(no, 

t)ldf > 

tO, t), taken that on LRT the inequality ~Yf(u,(u,, to, t), 
v is satisfiecl. 

The set of all points of tllc metric space R(n, pJI belonging to all 
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possible curves of the pencil of disturbed motions, initiating at the 

point a0 at the instant of time to, shall be designated by A(U~, t,) - 

To each pair (a, t) LRT there corresponds its own pencil of disturbed 

motions (initiating at the point a at the instant of time t), and as a 

consequence its own set A(a, t ). ‘Ihe upper face of the distances from 

points a’ to points of the set A(u, t) shall be designated as ~‘(a’, 

Ata, t)). Since n A(a, t), then ~‘(a’, A(n, t)) > pfs’; a). 

Definition. The undisturbed motion n’ is called stable, if for any 
c > 0 one can find such a S > 0, depending only on C, that any disturbed 

motion a,(aO, to, t), initiating in the vicinity of p(n’j a,) < S, 

satisfies for any t >/ t0 in the region of its definition* the conllition 

P(a’, a(.&), to, t). In the opposite case the undisturbed motion a’ is 

called unstable. 

It is obvious that if the undisturbed motion uc is stable one can find 

for anycl > 0 such a 6, > 0, depending only on c 1, that any pencil of 

disturbed motions, initiating at the instant t at the point a from the 

vicinity p(a’, a) < 6,, satisfies the condition p’(a’, A(a, t 1) < c I’ 

Passing to the proof of the theorems, we emphasize once more that we 

use the fact, in our discussion, regarding the existence of disturbed 
motions in an arbitrarily small vicinity of the undisturbed one. In those 
specific problems, in which the questions regarding existence are not 
clarified, the results proved have only a conventional meaning: if the 
corresponding solutions exist, and the conditions of the theorems are 

satisfied, then the conclusions are also valid. As a consequence, we apply 
a scheme in which the questions of existence are separated from the 
questions of stability in the same manner, as this is frequently done in 

studying questions of existence an4 uniqueness. 

Stabi 1 i ty Theorem. In order that the undisturbed motion be stable, it 

is necessary and sufficient that there exists, by virtue of the equations 
of the boundary value problem, a finite positive non-increasing functional, 

which admits an infinitely small upper bound. 

Proof. Recess i ty. Let the undisturbed motion CZ’ be stable, We take 

some E > 0 and by virtue of stability we find such R > 0, depending only 
on E, that any pencil of disturbed motions, initiating at the instant of 
time t at the point a from the vicinity p((z’, a) < R satisfies the condi- 
tion ~‘(a’, A(a, t) ) < E. To each pair (n, t) LRT we establish a cor- 
responding definite (one for a given pair and finite) real number 
f(as t) = pota’> A(a, t>>. 

l Damped disturbed motions are also admitted. 
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lhe functional f(a, t) is finite positive, since the inequality 

po (a’, A(a, t)) > p (a’, a) is satisfied. 

Ihe functional f(a, t) admits an infinitely small upper bound, since, 

by virtue of stability, for an arbitrary p > 0 one can find such a positive 

6 < R depending only on p, that any pencil of llisturbed motions, initiat- 

ing at the instant t at the point a from the vicinity ~(a’, a) < 6 

satisfies the condition pota’, A(a, t)) < p that is, from ~(a', a) < 6 it 

follows (f(a, t) 1 < p. 

Assume that for any t in the interval tl < t < t2, tl > to the points 

of disturbed motion aa(ao, tO, 

Qo$), to, 

t), including the terminal ones a1 = 

(a,, to, 

t,) and a2 = aa(ao, t,,, t,), 

t)) < R. Since the pencils, 

satisfy the condition ~(a’, aa 

originating at the points of one 

and the same curve, enter completely, at a later instant of time, into 

the group of pencils, originating at an earlier instant of time, it 

follows ACal, t,) z Atap, t,). From here ~‘(a’, Atal, t,)) > ~‘(a’, 

A$, t,)), that is, f(a , t ) > f(np, t,) or, more completely, 

f(a,(aO, tu, t,), 
functional f(a, 

t,) z &)aO, to, t,), t,), which indicates that the 

t) does not increase by virtue of the equations of the 

boundary value problem L(a, t) = 0. 

Supplement regarding asymptotic stability. Let the undisturbed motion 

be stable and let, in addition, any undamped disturbed motion, suffi- 

ciently close to the undisturbed one, approach it asymptotically. 'Ihen 

the functional f(a, t) = pota’, Afa, t)), constructed on LRT, vanishes 

along any such disturbed motion. 

In fact, under the assumptions met, for some positive 6 < R any un- 

damped disturbed motion aa(aO, tO, t), initiating in the vicinity of 

p(a', a,) < 6, satisfies the conditions ~(a’, aa(aO, tO, t)) < R for any 
t > to and ~(a'~ aa(ao, t,,, t)) + 0 for t + m. Let us take some undamped 

disturbed motion aa(a 0’ t0’ t) initiating in the vicinity of ~(a’, a,) < 6. 

‘Ihe first condition guarantees the existence of the function 

f$$so, to, t), t) for any t > to. ‘The second condition means that for 

anYVl> 0 one can find such tl = tl(aO, to, a) > to that for all t > tl 
the inequality p (a’, aa(ao, to, t)) < v1 is satisfied. 

let an arbitrary p1 > 0 be given. l3y virtue of stability for the given 

p1 one can find such a v1 > 0 that any pencil of disturbed motions 
initiating at the instant of time t at the point a from the vicinity 

p (a’, a) < VI satisfies the condition ~‘(a’, A(a, t)) < pl. For this v1 

one can find, as is indicated above, such a tl = tl(aO, to, a) > to that 

for all t > tl at points a = aa(ao, to, t) of the curve taken, the in- 

equality p(a), a) < v1 is satisfied, and consequently, ~‘(a’, A(a, t))<p, 

that is f(n, t) = f(a,(ao, to, t), t) < pl. 
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Thus, for any undamped disturbed motion aa(ao, t,,, t), initiating in 

the vicinity ~(a’, a,) < 6 for a given p1 > 0 one can find such a 

a) > t that f(a (a :ia; ;&Jo, tO, J ~ o for ; ,oL*tOJ t), t) < Pl for a11 t > t1 

If P(U', aJao, to, t)) + 0 as t -+ 00 uniformly with respect to a and 

a0 from the vicinity ~(a', a,) < 6, the nunber tl which was mentioned 

above, may be selected as being independent of a and a0 from the vicinity 

P(Q', a,) < 6. 

Sufficiency. Assume that for some R > 0 the functional f(a, t) 

possesses on LRT all the properties indicated in the theorem. Let also 

be given a positive c < R. 

‘Ike functional f(a, t) is finite positive, therefore for c > 0 and any 

pair (a, t) LRT satisfying* the condition ~(a', a) > 6 one can find 

such a p > 0, depending only on 6, that f(a, t) > p is satisfied. 

The functional f(a, t) adnits an infinitely small upper bound, there- 

fore, the number TV > 0 permits to determine such a positive 8 < c, de- 

pending only on p so that 1 f(a, t) \ < p and that for any pair (a, t) LRT 

the condition p(a’> a,) < 6 is'satisfied. 

Let us prove that for the 6 found, the disturbed motion aa(ao, to, t), 
initiating in the vicinity ~(a', 

inequality (~(a', aa ao, to, 
a,) < 6, satisfies for all t > to the 

t)) < c in the region of its definition. We 

shall assume that this is not so, and that there exists a disturbed 

motion aa(ao, to, t) initiating in the vicinity of ~(a’, a,) < 6 which, 
at a certain instant'of time t > tO, &es not satisfy the condition 

p(a’, aa(ao, to, t)) < C. 

Ihe to continuity of the curve aa(aO, to, t) one can find such a 

t 
i 

> to that in the interval to < t < tl the inequality ~(a', a 

t < c is satisfied, and at the instant tl the equality ~(a'~ 

(a,, to, 
aa aO,tO,tl))=~ ‘f 

‘Ihen f(aa(ao, Q)’ t,), t,) > p, which contradicts the condition of 

divergence of the function f(aa(ao, to, t), t) determined for any t in 

the interval to < t < t, and taking on at its lower limit the value 

f( a()’ toI < p. 

Supplement regarding asymptotic stability. Assume that the functional 

f(a, t) for some R > 0 possesses on LRT all the properties indicated in 

the theorem and assume, in addition, that the functional f(a, t) vznishes 

along any undamped disturbed motion, sufficiently close to the undis- 

turbed one. 'ILen any undamped disturbed motion, sufficiently close to the 

. If for a given E there is no pair (a, t) LRT, satisfying condition 

P(a’, a) > 6, the proof is trivial. 
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undisturbed one, approaches it asymptotically. 

In fact, under the assumptions met, for some positive 6 < R any un- 

damped disturbed motion ua(no, tO, t), initiating in the vicinity 

P(Q’, a,) < 8, satisfies the conditions ~(a’, aa(no, tO, t)) < R for all 

t > t0 and f(a,(nO, to, t), t) -t 0 as t -9 00. 

let there be given any positive c I < R. ‘Ike functional f{u, t f is 
finite positive, therefore, for the given c 1 and for any pair (a, t) LRT 

satisfying* the condition ~(a’, a) > cl, one can find such a p1 > 0 de- 

pending only on c 1 that fca, t) > pt. 

Let us take some undamped disturbed motion rza(ao, tO, tf, initiating 
in the vicinity p (a’, a,) < 8. Since f(a,(rzO, tO, t), t) + 0 as t + 00, 

one can find such a tl = tlfaO, tO, af > to that f(n,fa,, tO, t),t) < pl 
for all t > tl. Then for all t > tl for points QI = aa(ao, t 

7 

, t) of the 

curve taken, the relationship ~(a’, n) = ~(a’, ~,(a~, to, t 
satisfied because, 

) < cl is 

if fdr some t > tl the inequality p(a’, a) > cl would 

hold, for this t > tl one would also have f(u, t) = f(a,(a,, to, t), t)>,pl, 
which is impossible. 

Thus, for any undamped disturbed motion a 
the vicinit.y ~(a’, 

tl(u , to, 
n,)<S foragivenrl> 

(a,, tO, t), initiating in 

8, one can find such a 

t1 = 

that is p a’, ua(uO, to, t)f + 0 as t + M. 9 
a> > to that p(u’, ua(ao, to, t)) < cl for all t > tl 

If the functional f(a, t) vanishes along undamped disturbed motions 

“*(a(), to’ t), initiating in the vicinity p(ca’, nOI < 8, uniformly with 

respect to a and a,, from the vicinity p (n’, nO f < 6 the number tl, which 

was mentioned above, may be selected as being independent of a and aO, 
from the vicinity ~(a’, a01 < fi, that is, all undamped disturbed motions, 
sufficiently close to the undisturbed one, approach it uniformly asympto- 
tical ly. 

Ins tabi li ty Theorem. Let us assume that for some R > 0 among the dis- 

turbed motions, initiating on LR T, there are no damped ones, and that 

any two portions of disturbed motions connected on L R T, having at some 

instant of time in their region of definition a cornnon point, coincide 

ion LR T) at all the subsequent instants of time, that is, that for such 

portions a(aj, tl, t) and a(u2, t2, t) from atal, tl, t,) = n(n2, t2, tq) 

it follows atal, tl, t) 3 a(a2, t2, t) for t La t3. 

In order that the undisturbed motion be unstable, it is necessary and 
sufficient, that there exists a functional ffn, t) which is bounded in 

l If for the given E z there is not a single pair (a, f) LRT satisfying 

the condition p(a’, a) > cl, then the proof is trivial. 
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the region f(a, t) > 0 having pairs (a, t) for any sufficiently small 

vicinity of undisturbed motion, and that it has, by virtue of the equa- 

tions of the boundary value problem, a finite positive derivative f’(a,t). 

Proof. Necessity.* Let the undisturbed motion a’ be unstable. Then for 

some R > 0 ad an arbitrary positive 6 < R, we can find a disturbed motion 

a$, t(), t), initiating in the vicinity ~(a’, a,) < 6 and satisfying the 

condition ~(a’, atug, to, t) < R within some finite interval t0 ( t< to, 
whereby ~(a’> atug, tO, to)) = R. 

‘he portion of disturbed motion u(uO, to, t), to < t < to shall be 
called connected on LRT if for any t of the interval to ( t < to the 

relation p(u’> u(uo, to, t) < R is satisfied whereby either 

p(u’, u(uo,ot , to)) = R, or to = -. 

0y virtue of uniqueness, mentioned in the condition of the theorem, the 

set of all portions of disturbed motions connected on LRT may be sub- 

divided into classes le (a given index p characterizes a given class), 

including in a class with some portion atao, to, t) all the portions, 

having with it, at any instant of time t > to, common points ([6] , p.17). 

For some portion atao, to, t) of class 1~ the region of its definition is 

the interval to < t < tp’, whereby tp ’ has a common value for all portions 
of the class Zp (for example, the portion acal, tl, t) of class Zp is de- 
fined in the interval tl ( t < tp’). 

If t 
P 

’ < 02 along any portion of class 2 
P 

in the region of its defini- 
tion, we put f (a, t) = exp(t - too). For example, along the portion 

u(u to, t) of class 2~ we put f(u(uo, to, t), t) = exp(t - tp”) for any 
t w!‘thin the interval to < t < tp’., If tp” = m along any portion of class 

1. in the region of its definition, we put f(u, t) E 0. 
/3 

IhusZ; to each pair (a, t) LRT there corresponds a well-determined 

(one for a given pair and finite) real number f(a, t). 

Pairs (a, t) 

sufficiently small 

L R T for which f (a, t ) = exp( t - tpO) > 0 exist for any 
neighborhood of undisturbed motions (see beginnink of 

proof). 

0 s f(u, t) < 1 is satisfied everywhere 
functional f(u, t) is bounded. 

The functional f(u, t) is determined on 

on LRT, that is, the 

LRT in such a manner that 
along any disturbed motion u(uo, to, t) the relation 

l The necessary conditions can be proved without the assumption that the 
disturbed motions are undamped. 
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df(a$, to, t), t)/dt = f(a(ao, to, t), t) 

is satisfied. It follows that in the region f(a, t) > 0 the functional 

possesses, by virtue of the equations of the boundary value problem, a 
finite positive derivative f’(a, t 1. 

Sufficiency. Let for some R > 0 the functional f(a, t ) exist on LRT, 
which possesses the properties indicated in the conditions of the 

theorem. We assune that the undisturbed motion a’ is stable. .lken one 
can find such a 6 that any disturbed motion atag, tO, t) initiating in 

the vicinity of ~(a’, 

p(a’, a$, tO, 

a,) < 6 satisfies for all t > to the condition 

t 1) < R and does not pass beyond the. region in which the 

functional f(a, t) possesses the properties indicated in the conditions 

of the theorem. 

According to the conditions of the theorem, one can select such an un- 

damped motion a(a , to, 
9e 

t) among the disturbed motions initiating in 

the vicinity of p a , a,) < 6, that f tag, t,) > p > 0. We conclude, from 
the fact that the funktional f (a, t ) possesses in the region f(a, t 1 > 0, 
by virtue of the equations of the boundary value problem, a finite posi- 
tive derivative f’ (a, t 1, that .along the selected disturbed motion 

a(a0, to, t) for t ) to the relations 

f (a (a,, to, 0, t> >P, d/ (a (a,, to, t), 0 /dt>,v 

are satisfied simultaneously, where v is some positive number. Then it 

follows from the boundedness of the functional f(a, t) in the region 
f (a, t) > 0,and from the first inequality, that for some N > 0 and any 

t > to the relation f(a(a,, to, t), t) < N is fulfilled, while from the 

second inequality the contradicting relation f (ata,, t,,, t ), t) > 

f (a,, t,) + v(t - t,) follows for sufficiently large t > to. 

Rena&. ‘Ihe uniqueness mentioned in the condition of the theorem was 
not used in proving sufficiency. From the conditions of existence merely 

the fact that undamped disturbed motions a(a,,, to, t) exist, which is 
initiated in a sufficiently small neighborhood of the undisturbed motion 

in the region f(a, t) > 0, was employed. 

4. We consider the set H’ of real functions w(x, t ), completely defined 

and continuous in x, t in the region 0 < x < 1, t > to > 0, together with 
the derivatives wxx(x, t), MJ~(.s, t), wl(.s, t). At a fixed instant of time 
t we establish a correspondence between the function w(x, t) W in the 
region of its definition and the point w = [ w(x, t), w (s, 
of functions of magnitude x. The points w1 = I+, t,i, 

t)] , a pair 

WI tl (x, tl) 1 
and IV* = [ul,(x, t,), wzt2(x, t,)l shall be called coincident, if 
w (s tie ,& ww,(x, t,) and w~~~(z, tl) 5 wzt2(x, t,). ‘he distance between 

1 and w2 is called the non-negative number 
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It is easily verified that p(wl, w,) satisfies all the axioms of metric 

space. Ihe set of points tu, together with the metric p(wl, w2 1, forms the 

metric space R(w, p). The set of points w corresponding to functions 

&4X, t> W for all possible t within the region of definition, form in 

R(w, p) a continuous curve which we identify in the following with the 

function w(x, t) itself. 

We shall call the conditions of the boundary value problem L(w, t) = 0 

the equations (1) and the supplementary conditions of smoothness, that is, 

the continuity for all x, t of the functions wxxzx(xS t 1, dn, t), 

Q$X, t), w (x, t). From the set W we isolate a class .L of 

curves w(x, 7’ 
(x, t), Wf, 

t which satisfy the conditions of the boundary value problem 

Lfw, t) = 0. The curve w(x, t) zz 0 of the class L to which there corres- 

ponds for any t > 0 in R(ur, p) a fixed point 0, we shall call the undis- 

turbed motion; the remaining curves of class L shall be called disturbed 

motions. 

In accordance with the definition in Section 3, the undisturbed motion 
w(x, t) 4 0 shall be called stable, if for any E > 0, we can find such a 
6 > 0, depending only on E, that any disturbed motion W(X, t) initiating 

in the vicinity of ~(0, wk, to)) < 6 satisfies for t 
~(0, W(Z, t)) < t. To study stability we consider the 

) to the condition 

functional 

f(w) = i dx (w2 + =q wxa-t. wt”) 
0 

It can be shown that for any function I&, t) W, satisfying the _.. 
boundary conditions and the conditions of smoothness of the boundary 

value problem L(tu, t) = 0, the following inequalities are satisfied 

1 1 1 1 

s ’ dx w,.~ > x2 s dx ~2, s dx w2 > rcB s dx wa 
0 0 0 0 

with the aid of which we obtain 

From this we conclude, that if the condition 1 + (Q~N/~~D) > 0 is 



698 A.A. Movchan 

satisfied, that is, if N > N, the functional f(w) is finite positive* by 

virtue of the boundary value problem L(w, t)-= 0. 'fhe functional f(w) 

admits an infinitely small upper bound, as is evident from the estimate 

Along any curve 28(x, t) C W which satisfies the smoothness conditions 

of the boundary value problem L(w, t) = 0 the function f(wCx, t)) of time 

t is determined, whose derivative with respect to t may be written in 
the form, by means of differentiation under the integral sign and partial 

integration 

It is evident that by virtue of the equations of 

problem i,(w, t) = 0 the relation df(w(x, t)I/dt z 0 
consequently, the functional f(w) does not increase 
disturbed motion w(x, t). 

In satisfying condition N > N, stability, in the 

tion given above, follows from the first theorem of 

Liapunov. 

We note that along disturbed motions 

the boundary value 

is fulfilled and, 

with t along any 

sense of the defini- 

the direct method of 

Therefore, for N> N1 for given 6 > 0, one can find such a 6 > 0 de- 

pending only on t that any disturbed motion w(x, t) initiating in the 

vicinity ~(0, w(x, to)) < 6 satisfies for all t > to the condition 

p,(O, WIX, t)) = sup \w<x, t)\ < f. 
x 

Let us now consider the functional 

L,et us assume t\lat the relation #w(x, t,)) be/~ is satisfied for some 

* We emphasize that in proving the finite positive state of the func- 
tional f(o) the conditions of smoothness of the curves w(x, t) and 

the boundary conditions of the boundary value prohIem L(cu, t) h 0 

were essentially used. 
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~1 > 0 and for some undamped disturbed motion w(x, t) at instant to. 'Ihen 

f(w(n, to)) < 0. Along the disturbed motion considered, this inequality 
is valid for any t > tO, since f(w(x, t)) = f(w(n, t,)); as a consequence 

gS(q(x, t)) = - f(w(x, t))$(w(x, t)) for any t > tO. 

From this we find, by differentiating with respect to t under the 

integral sign and integrating by parts, using the equations of the bound- 

ary value problem L(w, t) = 0, that along the disturbed motion considered, 

for t > t0 

&(W(G t)> >v = 1" @(& &)) > 0, 'p@C? t>) >P 

that is, the functional +n(w) possesses, by virtue of the equations of the 

boundary value problem, a finite positive derivative qS'(w) in the region 

4(w)+ 0. 

The functional &w) is bounded in the region C+(W) > 0 since 

Applying now the instability theorem, we conclude that the undisturbed 

motion will be unstable, if there exist, in any sufficiently small 

neighborhood of this motion, unclamped disturbed motions initiating at 

points w(x, t,) for which $(w(n, to)) > 0. 

Let us consider the points w(x, t,) of the metric space R(w, p) which 

are characterized at the instant of time t0 by deflections c0 sinnx 

and velocities c 
1 are real arbitrary constants (for 

undamped 

sin 7 n where c7, "1 . 
disturbed motions w(n, t with lnltial deflections w,(x) and 

velocities w,(x) to exist, it is sufficient that wi(x) (i = 0,l) possess 

continuous sixth derivatives and that they vanish for n = 0, 1, together 

with tk derivatives wi" (~1, wi'"(x)). For these points w(x, t,), which 

are found (for suitable cO, 

the undisturbed motion, 

c,) in any sufficiently small vicinity of 

the functional f(w) takes on the values 

f (w (+* 63)) = a [co2 x4 (1 i- fg) -I- Cl21 

It is possible to choose such a smal 

that is, for N< N, the relation f(w(x, 

cOcl > 0, the relations +(w(x, to)) > 0 
satisfied. Consequently, for N < N, the 

lc ' that for l+ (a2N/~*D) < 0, 

toi) < 0 is satisfied; if 
and +(w(x, to)) > 0 are also 
undisturbed motion is unstable. 
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